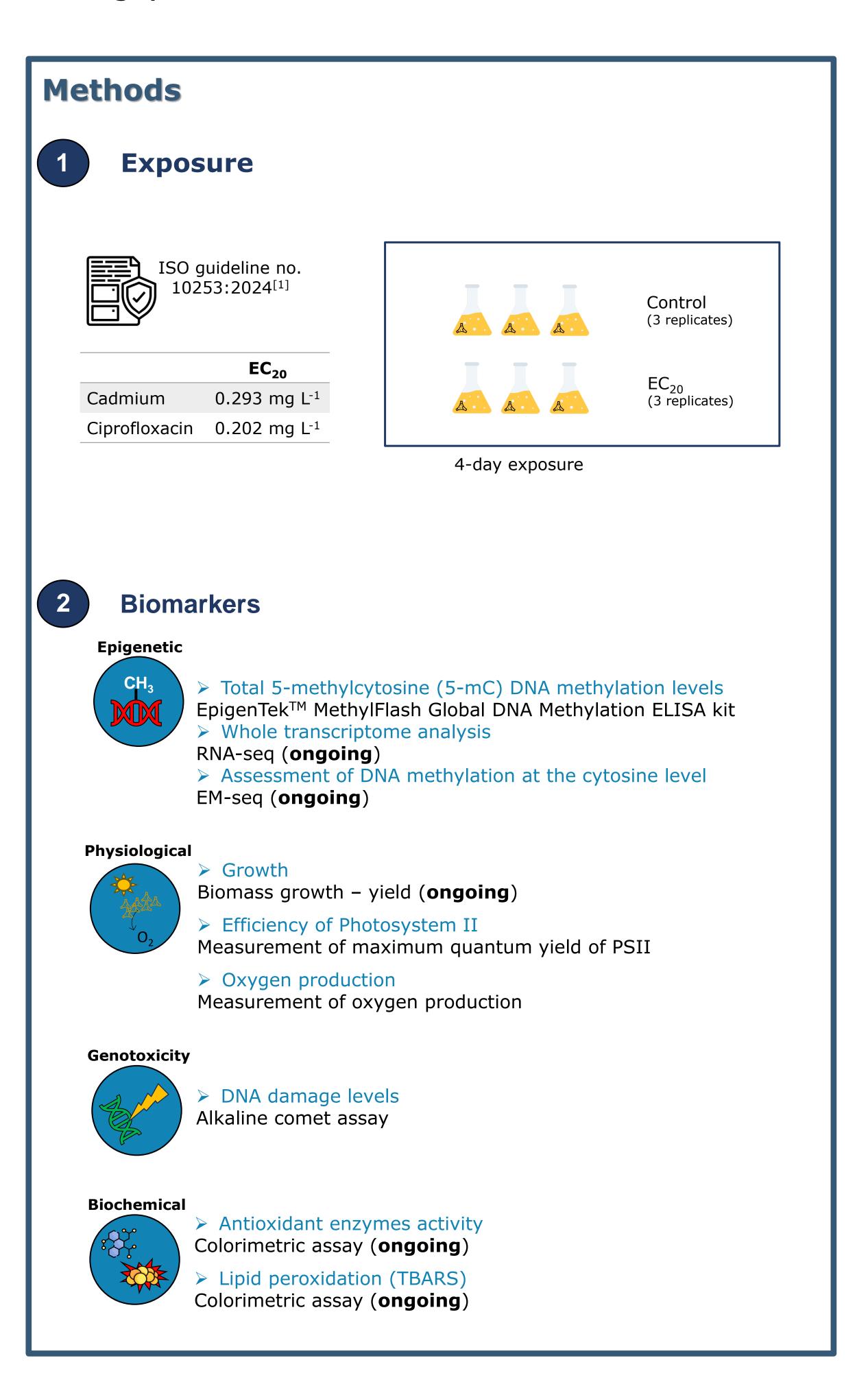


neither the EU nor the granting authority can be held responsible for them

Epigenetic and phenotypic effects of two contaminants in the marine diatom Phaeodactylum tricornutum

Joana I. Santos^{1,2 \boxtimes jisantos@ua.pt}, Silja Frankenbach^{1,2}, Sofia Valentim², Tânia Vidal^{1,2}, Joana Lourenço^{1,2}, Sérgio M. Marques^{1,2}, Inês P. E. Macário^{1,2}, Larissa Fonseca², Mafalda Pinhal², Albano Pinto^{1,2}, **Jana Asselman**³ and Joana Luísa Pereira^{1,2}


- ¹ CESAM Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
- ² Department of Biology, University of Aveiro, Aveiro, Portugal
- ³ Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium

Background

often contaminated Waters are with metals, pharmaceuticals and other chemicals, which have been impacting the organisms living in them by phenotypical into behavioral, translating genotypic alterations. The model organism to this study was the marine diatom *Phaeodactylum* tricornutum, an important microalgae in marine food chains, exposed to sublethal levels of the legacy environmental contaminant cadmium and antibiotic ciprofloxacin, which has been recognized as an emerging contaminant.

Aim

To perform a comparative study between epigenetic biomarkers (total DNA methylation) and several phenotypic endpoints, namely DNA damage (comet physiological efficiency (growth, assay), photosystem II and oxygen production) biochemical biomarkers (oxidative stress and damage).

Results (so far) Ciprofloxacin Cadmium **Epigenetic** Total 5-mC methylation Total 5-mC methylation ∢ 0.700 0.600 0.500 0.500 0.400 S 0.400 0.300 0.200 → 0.100 **Physiological** Maximum quantum efficiency PSII Maximum quantum efficiency of PSII Oxygen concentration Oxygen concentration ■ dark ■ light ■ dark ■ light Genotoxicity Damaged cell nuclei Damaged cell nuclei Ž 115 CTL EC20 EC20

Figure 1. Biomarkers measured in *Phaeodactylum tricornutum* exposed to 0.293 mg L⁻¹ of Cadmium and 0.202 mg L⁻¹ of ciprofloxacin – Epigenetic biomarkers: Total 5-mC levels (A1-A2); Physiological biomarkers: Efficiency of Photosystem II (B1, B3) and Oxygen production (B2, B4); Genotoxicity assay: DNA damage levels (C1-C2); CTL - control group, non-exposed organisms; EC20 - exposed organisms. Error bars correspond to standard error of the mean values; * represents statistically differences (Independent samples T-test, p < 0.05) between the exposed and control organisms.

- o Cadmium exposure led to global genome hypermethylation and ciprofloxacin led to hypomethylation
- o Cadmium induced inhibition in PS II but no significant effects on oxygen production, whereas ciprofloxacin caused no significant effects on both the efficiency of PS II and oxygen production
- Both chemicals caused observable genotoxicity

References

[1] ISO (2024) ISO 10253:2024, Water quality — Marine algal growth inhibition test with Skeletonema sp. and Phaeodactylum tricornutum.

Acknowledgements

This work was developed under the scope of project EPIBOOST, funded by the EU - Grant 101078991 (DOI: 10.3030/101078991); CESAM: UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020. SF was supported by FCT Individual Call to Scientific Employment Stimulus (DOI: 10.54499/2021.02653.CEECIND/CP1659/CT0012). TV and JL were funded by national funds (OE), through FCT - framework contract foreseen in Decree-Law 57/2016, changed by Law 57/2017. AP was funded by FCT - 2022.10817.BD.

Takeaway

 The results of this work are providing valuable insights on the effects of stressors like cadmium and ciprofloxacin in diatoms genome and concur to the adequate selection of biomarkers for an improved ecological risk assessment leading to better protection of marine microalgae.